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Abstract
We study the volume dependence of the Hugoniot pressure obtained from
shock-wave experiments by using the tight-binding (TB) potential. We observe
that the Hugoniot P–V curve of one metal resembles an effective cold P–
V curve of the same element but having a stiffer repulsive term in the TB
potential. We show that our ansatz is in systematic good agreement with
experimental data for 12 close-packed metals. This observation allows us to
derive a phenomenological relation between the Hugoniot curve and the 293 K
isotherm. Using finite strain theory, this relation is extended to metals having
non-close-packed structures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In shock physics experiments, a curve known as the Hugoniot curve is a valuable tool for
analyzing a material’s equation of state (EoS) [1]. If a solid with a defined initial pressure,
density, and energy is subjected to a series of compression experiments of varying shock
strengths, a set of new compression states can be plotted. The resulting (pressure versus
volume) curve is the material’s Hugoniot curve. Every material has a unique Hugoniot curve,
which means that along the Hugoniot curve the temperature only depends on the volume and
the initial solid state. From shock-wave (SW) experiments, extremely high pressures up to
1000 GPa can be reached in the solid. The shock wave travels at velocity us through the
solid, accelerates its atoms from rest to velocity u p and changes its density, atomic volume,
pressure, and internal energy per atom from ρ0, V0, P0 and E0 to ρ, V , PH and E . Assuming
thermal equilibrium before and after the shock, these quantities must satisfy the Rankine–
Hugoniot relations, derived from considerations of mass, momentum, and energy conservation:
PH − P0 = ρ0usu p, V/V0 = (us − u p)/us , and (PH + P0)(V0 − V ) = 2(E − E0).
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Experimentally the Hugoniot curve (PH versus V ) is obtained from the measured quantities
us and u p, while by solving the latter equation together with a theoretical EoS, which relates
P , V , and E , one can predict the Hugoniot curve [1]. Electronic structure calculations from
first-principles theory now make possible an accurate estimation of the Helmholtz free energy
and the resulting Hugoniot curve by taking into account the contributions of both phonons and
the thermal excitation of electrons [2–4] (see also [5] for a detailed analysis of this elaborate
method that accounts for possible phase changes along the Hugoniot curve).

In this paper we report a general property of the Hugoniot curves for transition metals. Our
model relies on the phenomenological observation that a Hugoniot P–V curve is very similar
to a low-temperature isotherm P–V curve of the same element but having an effective stiffer
interatomic repulsion. Indeed, one can notice that for most metals the difference between the
Hugoniot pressure and the isothermal pressure (both obtained at 293 K) tends to zero when the
volume is close to V0 and increases when the volume decreases [1]. Since, a stiffer repulsion
of the interatomic potential leads to very similar behaviors of the resulting pressure in these
compression states, one can wonder whether an effective cold P–V curve could mimic the
Hugoniot curve. Thus, and following this line of thought, our starting point in this work is an
ansatz that consists in modeling the Hugoniot curve from an effective ‘cold’ E–V curve.

For this purpose, we assume an effective energy expression from a modified form of
the tight-binding second-moment approximation (TB-SMA) potential developed in the past
to describe structural properties of fcc transition metals [6, 7]. The proposed effective energy
does not require any additional parameters and keeps the values of the usual four TB-SMA
parameters unchanged. A comparison of the resulting effective P–V curve to experimental
Hugoniot data shows a systematic good agreement for fcc Au, Ni, Pt, Rh, Pd, Ir, Ag, Cu, Pb,
Al metals and hcp Cd, Zn elements. We conclude that the position of the Hugoniot curve with
respect to the room-temperature isotherm is mainly driven by a common analytical relation that
depends only on the equilibrium quantities: V0, cohesive energy Ec, isothermal bulk modulus
B0 and its pressure derivative B ′

0. Then, we extend our description to bcc Mo, W, and Ta metals
by combining the main properties of our model and finite strain theory. Finally, using classical
thermodynamics relations, this work allows us to propose an analytical form of the temperature
increase along the Hugoniot curve.

2. Results

We use the N-body potential formulated in the TB-SMA scheme. Restricting the interaction to
the Z first neighbor atoms located at equivalent distance r , the bulk energy ESMA per atom is
written as [6]

ESMA(V ) = AZe−px − ξ
√

Ze−qx , (1)

where x = r/r0 − 1 = (V/V0)
1/3 − 1, r0 is the first neighbor equilibrium distance and A, p, ξ ,

and q are the parameters of the model. From the experimental values of the cohesive energy Ec,
atomic volume V0, and the isothermal bulk modulus B0, one can derive the following relations:
ξ = pEc/[(p − q)

√
Z ], A = q Ec/[(p − q)Z ] and pq = 9B0V0/Ec for cubic structures [6].

The fourth relation that fixes the values of the SMA parameters can be obtained from the shear
elastic constants [8], from Rose’s universal equation of state [9] where p/q = 2.95 [10] or
from B ′

0 the pressure derivative of B0 where p + q = 3(B ′
0 − 1). In this study, the SMA

parameters are taken from the original work of Rosato et al [8] for Ni, Cu, Ag, Pt, and Au
elements and determined from the p/q = 2.95 relation for the other metals (see table 1). From
equation (1) the volume dependence of the SMA pressure at T = 0 K is given by the following
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Table 1. The parameters of the model are taken from [8] for the X∗ elements, otherwise they are
calculated from the experimental values of r0, Ec, and B0 [21] and the p/q = 2.95 relation [10].
From equations (1) and (3) the resulting values of B0/Beff, B ′

0/B ′
eff, and B ′′

0 /B ′′
eff ratios are also

reported.

Ni∗ Cu∗ Ag∗ Rh Pd Ir Pt∗ Au∗ Pb Al Cd Zn

r0 (Å) 2.49 2.55 2.89 2.69 2.75 2.72 2.77 2.88 3.50 2.86 3.12 2.78
Ec (eV) 4.44 3.50 2.96 5.75 3.94 6.93 5.86 3.78 2.03 3.39 1.16 1.35
p 10.00 10.08 10.12 10.19 10.71 10.74 10.80 10.15 10.08 7.75 12.01 10.89
q 2.70 2.56 3.37 3.65 3.58 3.64 3.50 4.13 3.42 2.63 4.07 3.69
B0 196 137 105 278 183 341 262 166 41 74 47 63
B ′

0 5.23 5.21 5.50 5.61 5.76 5.79 5.77 5.76 5.50 4.46 6.36 5.86
B0/Beff 0.936 0.938 0.931 0.929 0.934 0.934 0.936 0.923 0.930 0.911 0.941 0.935
B ′

0/B ′
eff 0.927 0.928 0.927 0.927 0.930 0.930 0.931 0.925 0.927 0.910 0.936 0.931

B ′′
0 /B ′′

eff 1.063 1.066 1.054 1.050 1.052 1.051 1.053 1.046 1.053 1.062 1.048 1.051

equation of state [8]:

PSMA(V ) = 3B0

(1 + x)2

e−px − e−qx

p − q
. (2)

As shown in figure 1, the TB-SMA model (equation (2)) predicts well the isothermal EoS
obtained from static diamond-anvil-cell compression experiments. For certain elements (Cu,
Pb, and Al), we also report 293 K isotherms obtained from ab initio calculations [2, 4] in order
to show that the EoS from the TB-SMA model is accurate even at very high pressure.

We now propose an effective cold energy Eeff(V ) to mimic the Hugoniot curves. This
effective bulk energy per atom as a function of the volume is

Eeff(V ) = AZ(1 + x)−
p
2 e− p

2 x − ξ
√

Ze−qx , (3)

where x = r/r0 − 1 = (V/V0)
1/3 − 1. In this formulation we have only replaced the empirical

exponential Born–Mayer term e−px by a stiffer repulsive one of the form (1 + x)−p/2e−px/2.
Note that at V = V0, Eeff(V0) is minimum and is equal to the cohesive energy Ec. The
effective bulk modulus calculated from our model (equation (3)) is stronger by a factor
Beff/B0 = 1 + 1/[2(p − q)]. Its first pressure derivative B ′

eff is also higher than B ′
0 according

to the relation B ′
0/B ′

eff = [2(p − q) + 1](p + q + 3)/[9p − 6q + 2(p2 − q2) + 5].
Assuming again that the Hugoniot curve could be represented from the cold Eeff(V ) curve

of equation (3), following this logic the volume dependence of the effective pressure is simply
Peff(V ) = −dEeff/dV and becomes

Peff(V ) = 3B0

(p − q)(1 + x)2

[
2 + x

2(1 + x)
(1 + x)−

p
2 e− p

2 x − e−qx

]
. (4)

In figure 1, we report the effective pressure Peff(V ) deduced from equation (4) and the
experimental Hugoniot curves for the 12 metals. A remarkable quantitative agreement is
observed between our model and the Hugoniot experiments over a wide range of densities
and pressures. For all metals considered in figure 1, the volume dependence of the Hugoniot
pressure PH(V ) can be written as

PH(V ) ≈ Peff(V ). (5)

Besides, our model shows that the Hugoniot pressure is essentially driven by the room-
temperature EoS (i.e. PSMA(V )) and the equilibrium quantities V0, Ec, B0 and B ′

0 through
the same phenomenological relation. By combining equations (2) and (4) and considering that
x is small, we find that

�Peff(V )

PSMA(V )
≈ x(px − 2)

4(1 + x)(1 − e(p−q)x)
, (6)
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Figure 1. The pressure–volume equation of state from equation (2) (solid red line) and Hugoniot
curve estimated from equation (4) (dotted blue line). Parameters p and q are taken from table 1.
Experimental static compression measurements (St.), shock-wave data (Sh.), and the 293 K ab initio
isotherm (Th.) are also reported for comparison.

where �Peff = Peff − PSMA, p = 3(B ′
0 − 1)(1 + λ)/2, p − q = 3λ(B ′

0 − 1) and
λ2 = 1 − 4V0 B0/(B ′

0 − 1)2/Ec.
We now wonder if the general Hugoniot property found for close-packed structure persists

for bcc structure metals. Here, it should be recalled that the TB-SMA is unreliable for treating

4



J. Phys.: Condens. Matter 19 (2007) 476218 A E Gheribi et al

Figure 2. The pressure–volume EoS (solid red line) obtained by combining finite strain theory
(equation (8)) and 293 K ab initio isotherms [4]. For Mo, B0 = 260 GPa, B ′

0 = 3.89,
B ′′

0 = −0.015 GPa−1, for W, B0 = 302 GPa, B ′
0 = 4.00, B ′′

0 = −0.013 GPa−1, and for Ta,
B0 = 189 GPa, B ′

0 = 3.70, B ′′
0 = −0.016 GPa−1. The Hugoniot curve (dotted blue line) is

obtained by replacing the B0, B ′
0, and B ′′

0 terms in equation (8) by Beff, B ′
eff, and B ′′

eff, respectively,
using equation (7).

bcc structures and that the attractive part of the cohesive energy of non-close-packed structures
requires a more detailed description of the electron density of states (above the second-moment
approximation) [6, 7]. Another TB-SMA limitation can be seen from the experimental values
of the λ2 term, which is negative for Mo, W, and Ta bcc elements giving no solution for the
(p, q) couple. However, since the effective energy proposed in this work in equation (3) differs
by the SMA bulk energy from the repulsive term only, we believe that our modeling of the
Hugoniot curve can be extended to bcc metals. To prove this assumption, we note that a strong
signature of our model concerns the values of the effective bulk modulus Beff and its pressure
derivatives B ′

eff and B ′′
eff. Indeed, systematic ratios are observed in table 1, and for most close-

packed metals we find that

B0/Beff ≈ B ′
0/B ′

eff ≈ 0.93, B ′′
0 /B ′′

eff ≈ 1.05. (7)

Thus, the Hugoniot curve can be seen as a cold isotherm where the B0, B ′
0, and B ′′

0 terms are
replaced by Beff, B ′

eff, and B ′′
eff, respectively. To test this viewpoint, we use the Eulerian finite

strain theory. In this formulation, the pressure as a function of the Eulerian finite strain variable
f = [(V/V0)

−2/3 − 1]/2 is a polynomial in strain [11]

P = B0[1 + a1 f + a2 f 2 + · · ·][3 f (1 + 2 f )2.5], (8)

where a1 = 3(B ′
0 − 4)/2 and a2 = 3[B0 B ′′

0 + B ′
0(B ′

0 − 7) + 143/9]/2 are the third- and
fourth-order terms, respectively [11]. In figure 2, by fitting the finite strain EoS (equation (8))
to recent ab initio EoS, we obtain the B0, B ′

0, and B ′′
0 values for Mo, W, and Ta elements.

Then combining equations (7) and (8), we also plot in figure 2 the resulting Hugoniot and
compare it to experimental data. If at high pressure and for tantalum the Hugoniot pressure
is underestimated, the agreement between shock-wave experiments and our model is almost
perfect for Mo and W metals, indicating that the phenomenological relation found in our work
also applies for some bcc metals.

Finally, it is interesting to note that from our derivation of both the isothermal pressure
PSMA(V , T0) in equation (2) and the Hugoniot pressure Peff(V , TH) in equation (4), it is possible
to estimate the increase of the temperature TH along the Hugoniot curve that only depends on
volume. Indeed, by using the classical formulation of the thermal pressure [3, 12], the Hugoniot
pressure can be written as:

PH(V , TH) = P0(V , T0) + �Pth(V , TH), (9)

5
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Table 2. Values of parameters a, γe, and βe used in equation (13).

Cu Ag Pt Au Pb Al

a (GPa K−1) 0.0070 0.0058 0.0073 0.0072 0.003 55 0.0053
βe (10−3 J mol−1 K2) 0.695 0.646 6.8 0.729 2.98 1.35
γe 0.91 1.18 2.4 1.6 1.7 1.61

where T0 = 293 K. According to equations (4) and (5), we have shown that the thermal pressure
�Pth(V , TH) can be roughly written as

�Pth(V , TH) ≈ Peff(V , TH) − PSMA(V , T0) = �Peff(V ). (10)

At high temperature (roughly above the Debye temperature) the thermal pressure of a transition
metal can be separated into a lattice and an electronic contribution:

�Pth(V , TH) ≈ γl(V )

V
E l

th(V , TH) + γe(V )

V
Ee

th(V , TH), (11)

where γl(V ) and γe(V ) are the lattice and an electronic Grüneisen parameters. In the high
temperature approximation, the thermal lattice energy E l

th = 3kBT while the thermal electronic
energy Ee

th = 1/2βe(V/V0)
γe T 2 depends on volume with βe defined as the coefficient of

electronic heat capacity that is proportional to the density of electron states at the Fermi level.
The value of γl(V )/V is estimated from the high temperature approximation γl(V )/V =
a/3kB [12] where a = αV BT is the average product of the thermal expansion coefficient αV

and the isothermal bulk modulus BT.
Consequently, we obtain from equations (10) and (11) a simple polynomial form of the

Hugoniot temperature TH,

�Peff(V ) = aTH(V ) + 1

2V0
γeβe(V/V0)

γe−1TH(V )2, (12)

with the analytical solution

TH(V ) = V0

γeβe
(V/V0)

1−γe

[
−a +

√
a2 − 2

V0
γeβe(V/V0)γe−1�Peff(V )

]
. (13)

Finally, to illustrate how the temperature increases along the Hugoniot curve, we plot for
a few cases in figure 3 the Hugoniot temperature as a function of the relative volume
(V/V0) according to equation (13). Some experimental and calculated data obtained by
other authors are also reported for comparison. The values of the parameters a, γe, and
βe used in equation (13) are collected in table 2. Estimation of the parameter a requires
the knowledge of high temperature thermal expansion αV and isothermal bulk modulus BT.
In practice the thermal expansion is directly measured and the isothermal bulk modulus is
deduced from direct measurements of the adiabatic bulk modulus B S by using the relation
BT = B S[1 + T V α2

V B S/Cp]−1 [13]. Data for B S are taken from [14] (apart from those for Pt
for which [15] is used). Data for heat capacities at constant pressure Cp are taken from [16] and
the αV values are obtained from [17]. Finally for γe and βe, [18] and [19] are used, respectively.

3. Conclusions and discussions

Using phenomenological arguments, we propose an empirical relation to predict the Hugoniot
P–V curve for metals. This relation is verified with success from experimental data for 15
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Figure 3. Estimation of the temperature along the Hugoniot curve (dotted blue line) using
equation (13). Experimental measurements (Exp.) and calculated temperatures (Calc.) are also
reported for comparison.

metals having fcc, hcp, and bcc structures. Future efforts should focus on establishing the
underlying physics of the proposed P(V ) relation. However, the effective approach used in this
work allows us to drawn the following important conclusion: many metals obey to a common
relation between the Hugoniot P–V curve and the room-temperature isotherm. This relation
depends essentially on equilibrium quantities.

To conclude, we should again insist on the phenomenological character of the approach
chosen in this work. In this paper we do not claim that the repulsive interactions are changed
in the shocked state nor that the Hugoniot pressure is the volume derivative of the Hugoniot
energy. We simply observe that the Hugoniot curve looks very similar to an effective cold
E(V ) curve of the same element having a stiffer repulsion. Following the logic of this ansatz the
effective pressure that mimics the Hugoniot is seen as the volume derivative of the effective cold
E(V ) curve (equation (4)). Such phenomenological approaches are frequent in physics and
materials science. For instance in the field of ‘driven alloys’ [20], where alloys are maintained
in nonequilibrium conditions by some external dynamical forcing (e.g. irradiation, ball milling),
one uses an effective free energy functional to describe the so-called ‘dynamical equilibrium
states’ of driven alloys and assess their relative stability. This effective free energy functional
is a Lyapunov function of the kinetic problem, which does not have all the properties of a
free energy. Another example that is directly related to the topic discussed in this work, is
the ‘Universal features of the equation of state of metals’ by Rose et al [9]. The analytical
EoS function assumed by these authors is purely phenomenological. This universal relation
has been the subject of great debate. It has been tested from ab initio calculations and from
experimental data. Some physical insights into the nature of this binding energy–distance
relations were given by [10]. This ‘Universal empirical curve’ was very useful, in particular for
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the parametrization of interatomic potentials similar to the TB-SMA potential. More generally,
in most cases this type of ansatz has been found to be at the origin of important methodological
developments identifying and quantifying the underlying physics. Finally, let us add that since
the TB-SMA potential has been applied with success in the past to alloys [7], it would be
interesting to extend and test this phenomenological approach to estimate the Hugoniot curves
for alloys with a definite composition.
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